
Extreme Regression for Dynamic Search Advertising

Yashoteja Prabhu
∗†

t-yaprab@microsoft.com

Aditya Kusupati
‡§

kusupati@cs.washington.edu

Nilesh Gupta
∗

t-nilgup@microsoft.com

Manik Varma
∗†

manik@microsoft.com

ABSTRACT
This paper introduces a new learning paradigm called eXtreme

Regression (XR) whose objective is to accurately predict the numer-

ical degrees of relevance of an extremely large number of labels

to a data point. XR can provide elegant solutions to many large-

scale ranking and recommendation applications including Dynamic

Search Advertising (DSA). XR can learn more accurate models than

the recently popular extreme classifiers which incorrectly assume

strictly binary-valued label relevances. Traditional regression met-

rics which sum the errors over all the labels are unsuitable for

XR problems since they could give extremely loose bounds for

the label ranking quality. Also, the existing regression algorithms

won’t efficiently scale to millions of labels. This paper addresses

these limitations through: (1) new evaluation metrics for XR which

sum only the k largest regression errors; (2) a new algorithm called

XReg which decomposes XR task into a hierarchy of much smaller

regression problems thus leading to highly efficient training and

prediction. This paper also introduces a (3) new labelwise prediction
algorithm in XReg useful for DSA and other recommendation tasks.

Experiments on benchmark datasets demonstrated that XReg

can outperform the state-of-the-art extreme classifiers as well as

large-scale regressors and rankers by up to 50% reduction in the

new XR error metric, and up to 2% and 2.4% improvements in terms

of the propensity-scored precision metric used in extreme classifi-

cation and the click-through rate metric used in DSA respectively.

Deployment of XReg on DSA in Bing resulted in a relative gain of

58% in revenue and 27% in query coverage. XReg’s source code can

be downloaded from [1]

CCS CONCEPTS
•Computingmethodologies→Machine Learning; Supervised
learning by regression.

∗
Microsoft Research India

†
Indian Institute of Technology Delhi

‡
University of Washington

§
Work done during Research Fellowship at Microsoft Research India

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371768

KEYWORDS
Extreme classification, dynamic search advertising, regression

ACM Reference Format:
Yashoteja Prabhu, Aditya Kusupati, Nilesh Gupta, and Manik Varma. 2020.

Extreme Regression for Dynamic Search Advertising. In The Thirteenth
ACM International Conference on Web Search and Data Mining (WSDM ’20),
February 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3336191.3371768

1 INTRODUCTION
Objective: This paper introduces a new learning paradigm called

eXtreme Regression (XR) which can provide elegant solutions to

many large-scale ranking and recommendation applications includ-

ing Dynamic Search Advertising (DSA). To effectively solve XR

problems, this paper also develops new evaluation metrics and a

new highly scalable and accurate algorithm called XReg.

eXtreme Regression: The objective of eXtreme Regression is

to learn to accurately predict the numerical degrees of relevance of

an extremely large number of labels with respect to a data point.

Many large-scale ranking and recommendation applications can

naturally be reformulated as XR problems. For example, the tasks of

DSA, movie recommendation and document tagging can be posed

as the problems of predicting the search queries’ click probabilities

for an ad, the users’ ratings for a movie and the informativeness

of tags while describing a web document, respectively. These qual-

ify as XR problems since the total number of queries, users and

tags can potentially be in millions in these applications. The pre-

dicted relevance estimates could then be used to recommend the

most relevant labels to a data point which is the desired end goal

of recommendation systems. Alternatively, the recommendations

can also be further refined by filtering off less relevant ones or

by re-ranking them to improve their relevance, and the relevance

estimates provide principled ways of achieving these. To success-

fully solve an XR problem, new algorithms which could train and

predict efficiently over millions of labels as well as millions of data

points while also maintaining high prediction accuracy are required.

Furthermore, the definition of accuracy, or equivalently regression

error, needs to be redefined for XR settings where both the relevant

labels and the desired label recommendations are extremely small in

number compared to the complete label set whose most labels have

no influence on final recommendations. This paper addresses these

challenges by developing new evaluation metrics and algorithms.

DSA: DSA is a format of search advertising where the ads to be

shown against a search query, along with the associated ad-copy, ad-

title, bid-phrases etc., are algorithmically obtained by leveraging the

content from the ad landing pages. This saves considerable efforts

https://doi.org/10.1145/3336191.3371768
https://doi.org/10.1145/3336191.3371768

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

for advertisers, results in faster deployment of new ad campaigns

and enables more accurate user targeting. The ads shown by DSA

algorithms need to be highly relevant and generate user clicks for

the given query in order to earn revenue for the search engine

and satisfy the users and advertisers. In addition, these algorithms

need to train and predict very efficiently in order to scale to billions

of ads and millions of search queries across multiple markets and

maintain milliseconds’ prediction latencies. This paper solves DSA

as an XR task of estimating the click probabilities for the query, ad

pairs by using the new XReg algorithm. Note that different ads can

have different click probabilities for same query owing to multiple

query intents. For example the query "throne" on Bing refers to

an online strategy war game, an online tv series and a furniture

product with click probabilities of 0.2, 0.06 and 0.004 respectively.

Based on the predicted click probabilities, the less clickable ads are

filtered off, the remaining ads are re-ranked to promote those of

high quality and high advertiser bids, and a small number of top

ranked ads are finally shown for the given query.

Extreme Classification: Extreme classifiers annotate a data

point with the most relevant subset of labels from an extremely

large label set. Owing to their high scalability and accuracy in label

subset selection scenarios, extreme classifiers are increasingly being

used for DSA [46] and other large-scale recommendation problems.

Unfortunately, they make a fundamentally incorrect assumption

that a label is either fully relevant or fully irrelevant to a data

point which hurts their model accuracy. When applied to DSA,

they approximate all click-through rates to either 0 or 1 during

training and thus end up predicting less clickable ads. In turn, this

also undermines further filtering and re-ranking steps due to the

lack of reliable click probability estimates. Also, the ranking at the

top metrics used for evaluating extreme classifiers ignore the errors

in estimating the relevances and are hence not suitable for XR.

Regression and ranking: Multivariate regressors predict mul-

tiple numerical outcome variables as functions of the features of

a data point. Although such regressors could reliably estimate the

label relevances in XR, most existing regressors are designed for

small number of outcome variables and do not scale to millions

of labels in XR. Moreover, the standard regression metrics such

as Mean Absolute Deviation (MAD) which sum the regression er-

rors over all the labels are unsuitable for XR problems because the

quality of recommended labels, both before and after the filtering

and re-ranking steps, depend only on the accurate estimation of a

small number of label relevances. The pairwise ranking approaches,

which ensure that a more relevant item is ranked ahead of a less

relevant one for each pair of items, have been extensively used for

moderate-sized ranking and recommendation tasks. However, their

complexity scales quadratically in number of labels and therefore

don’t scale to million labels.

eXtremeRegressionmetrics: This paper proposes new regres-

sion metrics for XR which serve as good proxies for the ranking

accuracy and for the qualities of the subsequent label filtering and

re-ranking steps. These metrics average of the largest few regres-

sion errors which are usually caused by highly underestimating

or highly overestimating the relevances of the most or the least

relevant labels which in turn degrade the ranking quality. The new

XMAD@k metric can give up to 69x tighter bounds over ranking

regret than MAD. These new metrics can guide the crucial steps

in XR such as training, performance evaluation, hyper-parameter

tuning, model selection etc.
eXtremeRegressor algorithm: This paper also develops a new

eXtreme Regressor (XReg) algorithm which can efficiently regress

on to millions of label relevance weights in only logarithmic time.

XReg hierarchically clusters the labels into a balanced tree and

learns approximate regressors in each tree node which are common

to all the labels in the node. Due to high label sparsity, each data

point only participates in a logarithmic number of tree nodes which

can lead to a significant speed up during both training and pre-

diction by using appropriate algorithms. XReg essentially extends

the state-of-the-art Parabel extreme classifier to the regression set-

ting. XReg consistently outperforms extreme classifiers, large-scale

regressors and rankers in terms of ranking accuracy. On a DSA

dataset with 5M ads & 1M queries, XReg can train within just 20

hours using 1 core, predict in just 3 ms per query and give up to 58%

& 27% lifts in revenue and query coverage when deployed online.

Labelwise inference: The standard prediction scenario involves
recommending the most relevant labels for a test point, referred

here as pointwise prediction, but applications such as DSA and

movie recommendation can more naturally be posed in the reverse

manner of predicting the most relevant ads or movies (i.e. test
points) for each query or user (i.e. each label), referred here as

labelwise prediction. On these tasks, pointwise prediction might

recommend a small set of highly popular labels that are relevant to

all test points resulting in low label coverage. This paper develops

an efficient labelwise prediction algorithm in XReg, which signifi-

cantly improves the query coverage in DSA. Note that the XReg

training is agnostic to the choice of the prediction setting and the

same learnt model works well for both types of predictions.

Contributions: This paper: (a) introduces a new learning par-

adigm called eXtreme Regression (XR) and reformulates tagging,

movie recommendation and DSA applications as XR problems; (b)

develops new evaluation metrics and a highly scalable and accu-

rate algorithm called XReg to effectively tackle XR problems; and

(c) demonstrates that XReg can significantly improve revenue and

query coverage on Bing DSA when deployed in production. XReg’s

source code can be downloaded from [1].

2 RELATEDWORK
Extreme Classification: Much progress has recently been made

in developing extreme multi-label classifiers based on trees [4, 26,

28, 45, 47, 52], embeddings [9, 11, 14, 19, 22, 37, 41, 54, 58, 61] and 1-

vs-all approaches [5, 6, 25, 34, 38, 42, 46, 59, 62, 63, 66]. Among these,

1-vs-all approaches like DiSMEC [5], ProXML [6], Parabel [46] and

Slice [25] achieve state-of-the-art results on Precision@k , nDCG@k
and their propensity-scored counterparts, but train only from bi-

nary labels and are hence not apt for DSA. In terms of efficiency,

Parabel is many orders faster to train and predict than DiSMEC

and ProXML, hence XReg algorithm builds on top of Parabel. Slice

only works on low-dimensional embeddings and does not scale to

high-dimensional bag-of-words features used in this paper. Some

extreme classifiers like PfastreXML [26] and LEML [67] can be eas-

ily adapted to learn from any relevance weights, but they tend to

be inaccurate and inefficient since they train a large ensemble of

https://plarium.com/landings/en/throne/top_s
https://hbo.com/game-of-thrones
https://ebay.com/sch/i.html?_nkw=throne+chair
https://ebay.com/sch/i.html?_nkw=throne+chair

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

weak trees and inaccurate low-dimensional projections with linear

reconstruction time, respectively.

Performance of extreme classifiers has traditionally been mea-

sured in terms of Precision@k and nDCG@k [9, 47]. Recently,

propensity-scored metrics were introduced in [26] which give

higher importance to more useful and informative tail labels. How-

ever, all these metrics ignore the regression error in the predicted

relevance estimates when applied to XR.

Regression & ranking: Most of the conventional regression

approaches [7, 17, 53, 56, 67] learn a separate regressor for each

outcome variable and hence do not scale to millions of labels. This

problem is mitigated to some extent in the multi-objective deci-

sion tree based approaches [4, 26, 32] which scale sublinearly in

the number on outcome variables. However, these approaches suf-

fer from low accuracy issues despite learning a large ensemble of

weak trees. As seen from experiments, XReg can be significantly

more scalable and accurate than the naive 1-vs-all least squares

regressor [56], the more efficient LEML regressor with low-rank

assumption on the parameter space [67] and the decision tree based

PfastreXML [26]. The performance accuracy in regression have tra-

ditionally been measured by error metrics such as Mean Absolute

Deviation (MAD) and Root Mean Square Error (RMSE) [10], but

these are not appropriate for XR.

Learning to rank methods [12, 16, 23, 35, 36, 43, 48, 50, 60, 65]

have been widely used in the recommendation and ranking litera-

tures, primarily to re-rank a small shortlist of items which has been

generated by simple heuristics like tf-idf scoring or by more scalable

approaches like extreme classifiers or XReg. These rankers usually

have super-linear dependence on the number of labels and hence do

not scale to XR. Although negative label sampling could potentially

be used to make these approaches more scalable, their ranking per-

formance suffers significantly as demonstrated in Section 5 for the

popular RankSVM [21, 35] and the more recent eXtreme Learning

to Rank (XLR) [12] approaches. A plethora of accuracy metrics have

been proposed in the ranking literature [9, 27, 31, 36, 47, 55, 69],

but none of these measure the regression performance.

Dynamic search advertising: Various approaches have been
proposed for DSA in the organic search literature including informa-

tion retrieval based methods [29], probabilistic methods and topic

models [57] and deep learning [24, 51]; however these do not work

well for pithy ad-landing pages. Techniques based on landing page

summarization [13], translation and query language models [49, 64]

and keyword suggestion based on Wikipedia concepts [68] have

also been proposed for sponsored search; but these suffer from low

coverage problem. Extreme classifiers such as Parabel have also

been used in DSA to improve accuracy and ad coverage; but they

still suffer from low query coverage due to pointwise predictions.

As demonstrated in Section 5, XReg significantly improves rev-

enue and query coverage when included in the Bing DSA ensemble

comprising all the above alternatives.

3 EXTREME REGRESSION METRICS
Notation: Let an XR dataset comprise N data points {(xi , yi)}Ni=1
where xi ∈ RD is a D dimensional feature vector and yi ∈ [0,∞)L

is a ground truth relevance weight vector for point i . The weight
yil measures the true degree of relevance of label l to point i , with

higher values indicating higher relevance. Similarly, let ŷi ∈ [0,∞)L

denote the predicted relevance weight vector for point i . The func-
tion S(v,k) indicates the ordered index set of the k highest scoring

labels in a score vector v ∈ [0,∞)L .
Regression & ranking metrics: The regression metrics such

as MAD and RMSE; the ranking metrics such as relevance-weighted

Precision and nDCG at k (WP@k , WN@k) and Kendall’s Tau at k
(Tau@k) [31]; and WP@k-regret which is the difference between

the optimal and the attained WP@k are pertinant for this paper.

Their formulae are provided in the supplementary. The WP@k
metric reduces to PSP@k , CTR@k suitable for DSA, or Rating@k
based on whether yi are set to inverse propensity-scored relevances,
ad click-through rates, or user ratings respectively. Rating@k is the

undiscounted version of the familiar rating-based nDCG@k metric

used in recommender systems [27].

Extreme regressionmetrics: Let, ei be the vector of regression
errors where eil = |ŷil − yil |. The new XR metrics, eXtreme Mean

Absolute Deviation atk (XMAD@k) and eXtreme RootMean Square

Error at k (XRMSE@k) are defined as follows:

XMAD@k(ŷi , yi) =
1

k

∑
l ∈S (ei ,k)

eil (1)

XRMSE@k(ŷi , yi) =

√√
1

k

∑
l ∈S (ei ,k)

e2il (2)

For ease of discussion, this paper mainly focusses on the XMAD

metric, although most of the observations and results also apply to

XRMSE. XMAD@k averages the k maximum regression errors but

is minimized when all the L label relevances are predicted exactly

right. The following lemma shows that XMAD serves as a good

proxy for the ranking error. This is based on an intuition that the

ranking errors at the top occur mainly due to either highly underes-

timating or highly overestimating the relevances of the most or the

least relevant labels respectively leading to high regression errors

on such labels.

Lemma 3.1. For any true and predicted relevance vectors y, ŷ ∈
[0,∞)L , 0 ≤ WP-regret@k(ŷ, y) ≤ 2 ∗ XMAD@2k(ŷ, y) holds true.

In addition, 0.5 ∗ XMAD@2k(ŷ, y) ≤ WP-regret@k(ŷ, y) also
usually holds empirically (see Section 5) thus making XMAD error

a close bound for the ranking error.

Although the top ranked labels with the highest predicted rel-

evances could directly be recommended to a test point, it usually

helps to further improve the recommendations by either filtering

or re-ranking. The objective of filtering step is to maximize both

precision and recall by removing as many irrelevant labels across

as many test points as possible. This is crucial in DSA where there

are system limitations against online hosting of too many relevant

query, ad pairs. The following lemma shows that when the esti-

mated label relevances are almost accurate in terms of the XMAD

metric, almost ideal precision-recall trade-offs could be obtained

by directly using a global threshold on the predicted relevances.

Lemma 3.2. Given a test set where the true and predicted relevance
vectors of ith point are yi , ŷi ∈ [0,∞)L , AUPRC ≥ AUPRC∗ −O(k ∗
XMAD@k) holds true where AUPRC,AUPRC∗ are the attained and
ideal areas under the micro-averaged precision-recall curves plotted
using a global threshold.

http://manikvarma.org/pubs/prabhu20-supp.pdf

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

The lemma assumes that the number of retained labels per each

test point is less than k for the evaluated region of the curve. It is

reasonable to set k = log(L) since only a small number of labels

need to be recommended to each point.

Re-ranking the relevance estimates could significantly improve

the final ranking quality, especially when the XMAD errors are

small. An example of re-ranking is to combine these estimates with

the scores from tail classifiers (see [26]) to improve the recom-

mendation accuracies over rare labels. It is worth noting that bad

relevance estimates, despite inducing a good initial ranking, could

hurt the subsequent filtering or re-ranking performance. Unlike

XMAD, the traditional MAD metric is sensitive to the sparsity in

the ŷ vector which does not directly affect the ranking performance

in any way. For example, MAD error becomes huge for a dense

estimator like 1-vs-All least squares regressor since small regression

errors could accrue over million labels into a large value. Results

from Section 5 corroborate these observations.

Labelwise metrics: To evaluate performance in the labelwise

prediction scenario, all the above ranking and regressionmetrics, de-

fined for pointwise predictions, need to be redefined appropriately.

The formulae for labelwise metrics are provided in the supplemen-

tary. Most discussions and results in this paper, while presented

primarily for pointwise prediction case, also hold for labelwise

prediction setting after interchanging the roles of data points and

labels. To promote clarity, all pointwise and labelwise metrics will

be used with suffixes "-p" and "-l" respectively.

Note that proofs for the lemmas in this section are available in

the supplementary.

4 XREG: EXTREME REGRESSOR
This section describes XReg’s key components including the label

tree construction, the probabilistic regression model and the point-

wise and labelwise prediction algorithms using the same model.

4.1 Label Tree Construction
XReg learns a small ensemble of up to 3 label trees quite similarly

to Parabel. Each tree is grown by recursively partitioning the la-

bels into two balanced groups. Label partitioning is achieved by a

balanced spherical k = 2-means algorithm [46] is which takes as

input the feature vectors for all those labels in the current node and

outputs 2 label clusters, efficiently, in O(D̂L logL) time where D̂ is

the number of non-zero features per data point. The feature vector

for a label is represented by the unit vector that points along the

average of the training points which are relevant to the label:

vl = v′l /∥v
′
l ∥2 where v′l =

N∑
i=1

yilxi (3)

This is based on the intuition that two labels are similar if they

are active in similar training points. In DSA, two queries (labels)

are similar according to the proposed representation if they lead

to clicks on similar ads (training points). As a result, the k-means

algorithm ensures that the labels relevant for a data point end

up in the same leaf. Note that, unlike Parabel, XReg uses non-

binary relevance-weighted average leading to more informative

label feature representations.

4.2 A Probabilistic Regression Model
XReg is a regression method which takes a probabilistic approach

to estimating the label relevance weights. Firstly, all the relevance

weights are normalized to lie between 0 and 1 by dividing by its

maximum value, thus allowing them to be treated as probability

values. Note that while click-through rates in DSA are already

valid probabilities, the inverse propensities and the user rating

could exceed 1. Also, note that the predicted estimates can be easily

scaled back since no information is lost due to this normalization.

XReg treats the normalized relevance weights for each label as

the marginal probability of its relevance to a data point, which

is, in fact, the case in DSA. This allows XReg to minimize the KL-

divergence between the true and the predicted marginal probability

for each label with respect to each data point. KL-divergence [33]

measures how close 2 distributions are and is minimized when

the 2 are identical, thus justifying its use while regressing on to

probability values.

A naive 1-vs-All approach, which learns a separate regressor

minimizing KL-divergences for each label, would be extremely

costly to train when labels are in millions. To reduce this complexity,

XReg leverages the previously trained label tree. XReg expresses

the marginal probability of a label as the probability that a data

point traverses the tree path starting from the root to the label. Let

the path from root to label l consist of nodes nl1, · · · ,nlH where

H is tree height, nl1 is the root and nlH is the leaf node containing

solely label l . Let zlh denote the probability that a data point x visits
the node nlh after it has already visited the parent nl (h−1). Then
the true marginal probability yl that the label l is relevant to x is

equivalent to yl =
∏H

h=1 zlh . Similar equality holds for predicted

marginal probability: ŷl =
∏H

h=1 ẑlh . XReg then learns to minimize

an upper bound on the KL-divergence between the two according

to the following theorem.

Theorem 4.1. Given that yl =
∏H

h=1 zlh and ŷl =
∏H

h=1 ẑlh and
under the standard unvisited node assumption of Parabel

DKL(yl | |ŷl) ≤
H∑
h=1

slhDKL(zlh | |ẑlh) where slh =
h∏
˜h=1

zl (˜h−1) (4)

Proof. Proof is provided in the supplementary. □

The unvisited node assumption formalizes the observation that

the children of an unvisited internal node will never be traversed

and that the labels in an unvisited leaf node will never be visited by

a data point [46]. Due to the above theorem, XReg can separately

minimize the KL-divergence over the true and predicted probabili-

ties that a data point takes a particular edge in the tree, and still end

up minimizing the KL-divergences over each of the individual mar-

ginal label probabilities. The true probability value of edge traversal

zlh is essentially the probability that the data point visits any of the

labels in the subtree rooted at the node indexed lh. We instantiate

it to be equal to the largest marginal probability of any label in the

subtree, by assuming the worst-case scenario that labels in each

subtree are fully correlated, which promotes model robustness.

The KL-divergence minimization is mathematically equivalent

to training a logistic regressor for estimating zlh values for each

tree edge where every data point is duplicated with weights zlh

http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

and 1 − zlh :

min

wn
∥wn ∥

2 +
C

|In |

∑
i ∈In

{sinzin log(1 + exp(−w⊤n xi))+ (5)

sin (1 − zin) log(1 + exp(+w⊤n xi))} (6)

where n is used to index the node instead of lh, In only include

those points which reach the node n. The problem in (Eq. 5) is

strongly convex and was optimized using the modified CDDual

algorithm available from Liblinear package [18]. To summarize,

each internal node in XReg contains 2 1-vs-All regressors which

give the probability that a data point traverses to each of its children,

each leaf node contains M 1-vs-All regressors which gives the

conditional probability of each label being relevant given the data

point reaches its leaf.

We make a mild assumption that each data point has at most

O(logL) positive labels is made which is often valid on extreme

learning datasets. As a result, each data point traverses at most

O(log2 L) tree edges, which directly leads to a huge reduction in

training complexity thus resulting in O(ND̂ log
2 L) where D̂ is the

average number of non-zero features per data point. The following

lemma describes how XReg’s training objective is related to the

XMAD@k metric proposed earlier:

Lemma 4.2. XReg’s overall training objective minimizes an upper
bound over XMAD@k for all k , with the bound being tighter for
smaller k values.

Proof. The proof is provided in the supplementary. □

4.3 Pointwise Inference
The pointwise inference algorithm in XReg utilizes the same beam

search prediction technique proposed in Parabel where only the

top ranked relevant labels are recommended based on a greedy,

breadth-first tree traversal strategy. The following theorem proves

that such traversal mechanism is not only asymptotically optimal

for both WP@k and XMAD@k but also strongly generalizable with

O(polyloд(L)) sample complexity. This uses the assumption that

each data point has at most O(logL) positive labels. Also the theo-

rem assumes that each individual regressor in well-generalizable

and achieves zero-regret with infinite data samples.

Theorem 4.3. When each data point has at mostO(logL) positive
labels, the expected WP@k regret and XMAD@k error suffered by
XReg’s pointwise inference algorithm are bounded by:

O(log2 L

√
W√
Np

√
1 +

√
5 log

3L

δ
)

with probability at least 1−δ , where N is the total training points, L is
the number of labels,W is themaximumnorm across all node classifier
vectors and p is the minimum probability density of x distribution
that any tree node receives.

Proof is available in the supplementary. Therefore the errors go

to 0 as N → ∞. The log2 L dependence arises because each data

point visits at most log
2 L nodes in a tree.

4.4 Labelwise Inference
The XReg model also allows efficient labelwise inference. The core

idea here is to estimate from training data the fraction of points with

non-zero relevance that visit each node of the tree and allot a factor

F times the same fraction of top ranking test points to respective

nodes. On large scale datasets with enough training and test points,

the ratio of non-zero relevance points in each tree node remain

almost the same over training and test points. The factor accounts

for any small deviations. This strategy is adopted to ensure that all

non-zero relevance points for a label end up reaching the label’s

leaf node. Finally, the topmost scoring test points that visit a label’s

leaf node are ranked at the top for that label, where the scores are

marginal relevance probabilities, the average test time complexity

is O(F log2 L) per test point. Pseudocode for labelwise inference is
provided in the supplementary.

5 EXPERIMENTS
Datasets: Experiments were carried out on several medium and

large scale benchmark datasets with up to 4.9M training points,

1.8M features and 1.4M labels (see Table 1 for dataset statistics).

These datasets cover diverse applications such as document tag-

ging (BibTeX [47], EURLex-4K [40], Wiki10-31K [8] & WikiLSHTC-

325K [9, 44]), content-based movie recommendation (YahooMovie-

8K [3] & MovieLens-138K [2, 20]), item-to-item recommendation of

Amazon products (Amazon-670K [9, 39]), sponsored search adver-

tising (SSA-130K) and dynamic search advertising (DSA-130K, DSA-

1M). For ease of discussion, the label size suffixes are dropped from

dataset names hereafter except for DSA. The document tagging,

item-to-item recommendation, and SSA datasets require pointwise

inference whereas the movie recommendation and DSA datasets

require labelwise inference. YahooMovie and MovieLens use nor-

malized (between 0 and 1) user-provided movie ratings as relevance

weights and movie meta-data like summary, genres, and tags as

features. For all the datasets, bag-of-words feature representation

derived from text descriptions are used. SSA and DSA are propri-

etary datasets that were created by mining the Bing logs. Rest of

the datasets are available from [1].

Baselines: XReg was compared to leading extreme classifiers

such as PfastreXML [26], Parabel [46], DiSMEC [5] and ProXML [6],

traditional multivariate regressors such as one-vs-all least-squares

regression (1-vs-all-LS) and LEML [67], and a popular pairwise

ranker, RankSVM [21, 35]. XRegwas also compared to the recent eX-

treme Learning to Rank (XLR) [12] approach. ProXML is the current

state-of-the-art over propensity scored precision@k (PSP-p@k) dur-
ing pointwise inference. Results for DiSMEC and ProXML, which

Table 1: Dataset statistics

Dataset Train Features Labels Test Avg. labels Avg. points

N D L N ′ per point per label

BibTeX 4,880 1,836 159 2,515 2.40 111.71

EURLex-4K 15,539 5,000 3,993 3,809 5.31 448.57

Wiki10-31K 14,146 101,938 30,938 6,616 18.64 8.52

SSA-130K 122,462 152,192 130,515 54,773 5.60 7.60

WikiLSHTC-325K 1,778,351 1,617,899 325,056 587,084 3.26 23.74

Amazon-670K 490,449 135,909 670,091 153,025 5.38 5.17

YahooMovie-8K 8,341 28,978 7,642 3,574 18.57 28.96

DSA-130K 122,462 152,192 130,515 54,773 5.60 7.60

MovieLens-138K 18,732 19,924 138,490 8,012 527.31 101.83

DSA-1M 4,914,640 1,840,877 1,453,150 2,106,273 0.23 7.80

http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

Table 2: XReg achieves the best or close to the best ranking and regression performance in both pointwise ("-p") and labelwise ("-l") prediction
settings. Re-ranking with tail classifiers (XReg-t) further improves the performance in many cases. More results are in the supplementary.

Method

PSP-p@5

(%)

Tau-p@5

(%)

XMAD-p@5

Training

time (hrs)

Test time

/point (ms)

Model

size (GB)

BibTex

PfastreXML 59.75 53.68 0.3151 0.0050 0.2348 0.0246

Parabel 57.36 51.48 0.3372 0.0015 0.1945 0.0035

LEML 56.42 51.58 0.3520 0.0229 0.1737 0.0032

1-vs-all-LS 60.14 54.21 0.3337 0.0007 0.1137 0.0023

RankSVM 59.12 52.58 0.7089 0.0015 0.0719 0.0023

DiSMEC 57.23 51.47 0.3371 0.0004 0.0951 0.0012
ProXML 58.30 - - - - -

XReg 58.61 52.35 0.3158 0.0035 0.1642 0.0030

XReg-t 58.77 52.46 0.3386 0.0025 0.1256 0.0043

EURLex-4K

PfastreXML 45.17 48.85 0.1900 0.0887 1.3891 0.2265

Parabel 48.29 50.75 0.4227 0.0245 1.1815 0.0258

LEML 32.30 37.24 0.2115 0.3592 4.4483 0.0281

1-vs-all-LS 52.27 53.96 0.1744 0.1530 4.5378 0.1515

RankSVM 46.70 51.43 1.1967 0.1834 4.7635 0.1470

DiSMEC 50.62 52.33 0.4308 0.0999 1.9489 0.0072
ProXML 51.00 - - - - -

XReg 49.72 52.86 0.1849 0.0642 1.2899 0.0378

XReg-t 50.40 53.45 0.2132 0.0544 1.2074 0.0692

Wiki10-31K

PfastreXML 15.91 20.29 0.5705 0.3491 11.6855 0.5466

Parabel 13.68 19.83 0.7085 0.3204 3.7275 0.1799

LEML 13.05 20.06 0.5716 0.9546 54.9470 0.5275

1-vs-all-LS 21.89 26.71 0.5459 2.4341 129.8342 16.9871

RankSVM 18.46 25.84 1.2236 4.9631 92.2684 10.8536

DiSMEC 15.61 22.43 0.7140 2.1945 13.8993 0.0290
XReg 16.94 24.97 0.5716 0.6184 3.7649 0.3218

XReg-t 22.60 30.55 0.5506 0.6431 5.4910 0.9026

WikiLSHTC-325K

PfastreXML 28.04 36.38 0.1437 7.1974 6.9045 13.3096

Parabel 37.22 41.71 0.2459 1.2195 2.2486 3.0885
DiSMEC 39.50 - - - - -

ProXML 41.00 - - - - -

XReg 36.92 41.62 0.1411 4.5119 3.0312 3.5105

XReg-t 40.33 43.39 0.3140 3.8552 3.0896 4.1955

Amazon-670K

PfastreXML 28.53 30.97 0.4019 3.3143 11.4931 9.8113

Parabel 32.88 31.32 0.4292 0.5815 2.3419 1.9297
DiSMEC 34.45 31.94 0.4275 373 1414 3.7500

ProXML 35.10 - - ≈ 1200 ≈ 1000 -

XReg 33.24 34.72 0.3869 1.4925 2.4633 3.4186

XReg-t 34.29 35.83 0.4473 1.1864 2.2242 4.5952

Method

CTR-p@5

(%)

Tau-p@5

(%)

XMAD-p@5

Training

time (hrs)

Test time

/point (ms)

Model

size (GB)

SSA-130K

PfastreXML 27.79 23.77 0.0655 1.3765 5.2419 1.6258

Parabel 32.97 30.25 0.1430 0.2283 1.9098 0.3625
LEML 6.54 8.10 0.0654 8.3253 161.6891 1.1308

RankSVM 13.06 14.03 2.7871 9.6026 130.0945 7.4834

DiSMEC 32.75 29.16 0.1562 31.4358 61.0967 0.0802

XReg 32.39 28.27 0.0684 0.4570 7.4715 0.7871

XReg-t 32.81 28.73 0.1131 0.5049 1.7746 1.4156

Method

Rating-l@5

(%)

Tau-l@5

(%)

XMAD-l@5

Training

time (hrs)

Test time

/point (ms)

Model

size (GB)

YahooMovie-8K

PfastreXML 10.18 19.72 0.6286 0.0241 8.5074 0.0753

Parabel 9.73 28.22 0.6284 0.0299 0.9639 0.1307

LEML 21.79 28.85 0.6408 0.0593 5.3650 0.0586

1-vs-all-LS 21.63 31.24 0.6269 0.0740 6.8841 1.6977

RankSVM 24.88 33.28 1.0579 0.1282 5.1620 0.7172

DiSMEC 24.53 32.75 0.6207 0.0337 3.4258 0.0376

XLR 4.66 10.72 0.6716 - 4.7724 0.0293
XReg 25.86 35.00 0.6248 0.0685 4.1965 0.2829

XReg-t 26.05 35.33 0.6185 0.0615 3.6353 0.4500

MovieLens-138K

PfastreXML 7.25 22.84 0.9199 0.4514 19.8270 0.1837

Parabel 3.51 37.80 0.9200 1.7790 1.6132 3.4322

LEML 43.19 64.78 0.8722 0.4186 91.4262 0.2535

1-vs-all-LS 42.16 63.92 0.8832 2.5756 121.6169 16.1334

DiSMEC 45.35 61.55 0.8857 1.5437 74.9537 1.0514

XLR 9.67 21.42 0.9134 4.579 68.347 0.0634
XReg 48.94 66.99 0.8741 2.6287 7.7996 3.6223

XReg-t 49.29 67.36 0.8285 2.7437 9.8279 4.8958

Method

CTR-l@5

(%)

Tau-l@5

(%)

XMAD-l@5

Training

time (hrs)

Test time

/point (ms)

Model

size (GB)

DSA-130K

PfastreXML 28.18 34.75 0.0422 1.3765 5.2419 1.6258

Parabel 33.97 28.37 0.0891 0.2283 1.9098 0.3625

LEML 10.36 7.70 0.0415 8.3253 212.1707 1.1308

DiSMEC 34.06 27.96 0.1039 31.4358 55.4037 0.0802

XLR 0.09 0.10 0.4816 5.5430 64.1134 0.0678
XReg 35.66 28.51 0.0439 0.4570 7.4715 0.7871

XReg-t 36.32 28.45 0.0587 0.3669 8.4376 1.3512

DSA-1M

Parabel 37.95 30.93 0.1004 9.2800 2.5031 5.6774
XReg 37.57 31.09 0.0563 20.7463 3.1792 11.0178

XReg-t 38.81 31.41 0.0714 15.4201 3.4036 18.7434

required 1000s of cores, could not be replicated on large datasets

and hence the numbers from the corresponding papers have been

reported directly. RankSVM was unable to scale to datasets larger

than SSA-130K and hence required down-sampling of negatives

up to 0.1% on these larger datasets. XLR, which specifically ad-

dresses the labelwise recommendation task, has only been applied

to labelwise datasets. For the other baselines, results have been

reported for only those datasets up to which the implementations

scale. Since many of these large-scale datasets have a preponder-

ance of tail labels, results for a variant of XReg where predicted

labels have been reranked with tail classifier scores have also been

reported with a "-t" suffix. The tail classifiers are generative clas-

sifiers which are tailored for accurate predictions on labels with

< 5 training point samples [26]. For extreme classifiers which train

on binary labels (Parabel, DiSMEC, and ProXML), all positive rel-

evance weights were approximated to be fully relevant (value 1).

Remaining baselines, including the PfastreXML and LEML, were

trained on relevance weighted labels for a fair comparison.

Hyperparameters: XReg has 5 hyperparameters: (a) number

of label trees in the ensemble (T); (b) number of tree paths explored

by a test point during pointwise prediction (P); (c) maximum ratio

of test to train points that traverse to each node during labelwise

prediction (F); (d) maximum number of labels in a leaf node of

XReg tree (M); and (e) regularization parameter common to logis-

tic regressors in all the internal and leaf node classifiers (C). On
medium-sized datasets, the XReg’s hyperparameters were set by

fine-grained tuning over a 10% validation dataset. On larger datasets

where tuning was not feasible, the default hyperparameter setting

of T = 3, P = 10, F = 4, M = 100 and C = 10 was used. Results in

table 8 of the supplementary demonstrates that the above default

values of T , P ,M achieve the best trade-off between accuracy and

http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

scalability across multiple datasets and increasing any of them fur-

ther leads to minimal gains in accuracy while linearly increasing

the training or prediction cost. The value of α , which adjusts the

influence of tail classifiers in XReg-t, was also tuned on the valida-

tion data. The hyperparameters for baseline algorithms were also

set by tuning on medium datasets and set to defaults suggested in

the respective papers/codebases on larger datasets.

Metrics and hardware: Performances were evaluated using ac-

curacy metrics such as WP@k variants, Tau@k and XMAD@k (see

Section 3) as well as efficiency metrics such as training time, test

time per data point and model size. AmongWP@k variants, for tag-

ging (BibTeX, EURLex, Wiki10, WikiLSHTC) and Amazon datasets

PSP@k are reported; for SSA and DSA which are ads datasets

CTR@k is reported; and for movie recommendation datasets (Ya-

hooMovie and MovieLens) Rating@k is reported. All accuracy met-

rics are suffixed with "-p" or "-l" depending on whether the predic-

tion scenario is pointwise or labelwise. All experiments were run

on an Intel Xeon 2.5 GHz processor with 256 GB RAM.

Results on benchmark datasets: Table 2 compares XReg’s

performance to diverse baselines on datasets belonging to tagging,

recommendation and DSA applications. In terms of prediction ac-

curacy, XReg consistently achieves close to best performance in

terms of WP@5, Tau@5 as well as XMAD@5 metrics. In particular,

XReg can be up to 2.4%, 3.89% and 2x better than all baselines in

WP@5, Tau@5 and XMAD@5 respectively.

On most tagging datasets, XReg scores within 2% of the state-of-

the-art ProXML in terms of the popular PSP@5 metric but can be

up to 1000x faster during both training and prediction.

XReg consistently outperforms extreme classifiers like Parabel

and DiSMEC which train only on binary labels. In particular, XReg

can be up to 9% and 45% better than Parabel over pointwise and

labelwise datasets in terms of WP@5. The larger gains on labelwise

datasets are due to pointwise prediction in Parabel which can lead to

low label coverage, especially on datasets like MovieLens with only

8K test points but around 140K labels. Owing to similar classifier

architectures, XReg can be highly efficient just like Parabel. XReg

is at most 3.75x and 4.8x slower during training and prediction and

has at most 2.15x the model size as Parabel.

Owing to their high scalability, both Parabel and XReg scale to

the largest DSA-1M dataset where none of the other approaches

scale. On this dataset, XReg has 50% smaller XMAD@5 than Parabel.

XReg-t denotes the re-ranked XReg where the predicted rele-

vance estimates are combined with tail classifier scores to improve

ranking performance over more informative tail labels. XReg-t con-

sistently improves performance over XReg since most XR datasets

are dominated by tail labels. XReg-t can be up to 5.66% and 5.58%

better than XReg in terms of PSP@5 and Tau@5. However, XReg-t

often increases XMAD@5 over XReg since tail classifiers are not

regressors but are good generative classifiers which and therefore

increase regression errors. Since the tail classifiers are extremely

efficient to train and the re-ranking step is only applied to a small

number (100s) of labels with high relevance estimates from XReg,

XReg-t can be very efficient with 1.1, 1.96 and 2.8 times the training

time, prediction time and model size as XReg in worst case.

Additional results for WP@k, Tau@k where k=1,3, nDCG@5

and XRMSE@5 are available in the supplementary.

Filtering and re-ranking: The accurate relevance weight esti-
mates that XReg produces can be used for many downstream tasks

such as filtering and re-ranking as discussed in Sections 1 and 3.

Table 3 reports (1) AUPRC which measures the quality of filtering

and (2) WP-rerank@5 which measures the quality of reranking

with tail classifiers by using the relevance estimates generated by

(a) Parabel, (b) XReg and (c) XReg-zero which corrupts XReg’s

estimates by setting all relevances to almost 0 while maintaining

the same rankings. As can be seen, XReg consistently outperforms

Parabel and XReg-zero, both of which have higher regression errors

as measured by XMAD@5, during both filtering and re-ranking.

XReg-zero’s results demonstrate that just accurate ranking, as mea-

sured by the WP@5 column, is not enough for good filtering and

re-ranking performance and that low regression errors are also

necessary. Furthermore, regression errors measured in terms of tra-

ditional MAD are not reliable since MAD is sensitive to the sparsity

in relevances and can in fact be lower for corrupted relevances such

as in XReg-zero. Figures showing the AUPRC plots can be found

in supplementary.

Analysis of ranking errors and regression metrics: Table 4
presents the relationship between XMAD & MAD to the rank-

ing error (WP-regret@k). Table 4 shows that, across all the base-

lines, 2*XMAD@2k is a much better upper bound for WP-regret@k

compared to the traditional MAD. Particularly, on regression and

classification techniques, 2*XMAD@2k is 1.35-5.84 times the WP-

regret@k while MAD can be up to 69x larger than 2*XMAD@2k.

In general, ranking baselines (RankSVM, XLR) do not produce good

regression values making the ratio of 2*XMAD@2k and MAD to

WP-regret@k much higher. Lastly, for the dense score prediction

algorithms like 1-vs-all-LS, MAD is significantly high since it sums

up the errors across all labels.

Ablation Studies: To test the effectiveness of the proposed

XReg along with its novel labelwise prediction algorithm, exper-

iments were done to show the boost due to each of the factors.

First, the extension of Parabel-logloss to utilize label weights lead

to pointwise XReg which improved the ranking metrics up to 1.5%

over Parabel across the 3 labelwise datasets showing that XReg

can learn better from relevance weights. Further, when XReg was

coupled with the novel labelwise prediction algorithm, the gains

were up to 16%, 1.1% and 45% on YahooMovie-8K, DSA-130K, and

MovieLens-138K respectively due to higher label coverage. Lastly,

the use of tail classifiers with XReg (XReg-t) further increased the

ranking performance by up to 0.7% over labelwise XReg.

DSA Results: Table 2 shows the offline evaluation on DSA-

130K and DSA-1M while Table 6 showcases the results of the live

deployment of labelwise XReg in Bing DSA pipeline. Even though

few of the extreme classification techniques could scale to DSA-

130K, the live deployment requires the techniques to scale to tens

of millions of labels (queries) and data points (ads). In the actual

deployment only PfastreXML, Parabel, and XReg were able to scale.

Table 6 compares XReg’s performance to the existing DSA ensem-

ble, consisting of BM25 information retrieval based algorithm [29]

and PfastreXML when deployed on Bing. Both pointwise and label-

wise XReg were deployed and evaluated. Pointwise XReg increased

RPM, CY, and IY by 5% while maintaining the CTR and BR. Finally,

the labelwise XReg boosts the revenue by 58%, improves query

http://manikvarma.org/pubs/prabhu20-supp.pdf
http://manikvarma.org/pubs/prabhu20-supp.pdf

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

Table 3: XMAD@k is a better indicator of the filtering and re-ranking qualities than purely ranking metrics like WP@k or traditional regres-
sion metrics like MAD.

Method AUPRC

WP-rerank-p

@5 (%)

XMAD-p@5 MAD

WP-p

@5 (%)

EURLex-4K

Parabel 0.092 49.67 0.4227 3.96 48.29

XReg 0.117 50.39 0.1849 1.22 49.72
XReg-zero 0.085 50.12 0.2255 1.21 49.72

Wiki10-31K

Parabel 0.036 21.14 0.7084 10.15 13.67

XReg 0.046 22.60 0.5716 6.01 16.94
XReg-zero 0.036 19.20 0.5781 5.61 16.94

Method AUPRC

WP-rerank-l

@5 (%)

XMAD-p@5 MAD

WP-l

@5 (%)

YahooMovie-8K

Parabel 0.135 10.09 0.6283 6.39 9.72

XReg 0.175 26.03 0.6248 6.78 25.85
XReg-zero 0.076 25.93 0.6306 5.83 25.85

DSA-130K

Parabel 0.016 34.59 0.0890 0.88 33.97

XReg 0.035 36.32 0.0438 0.24 35.65
XReg-zero 0.010 35.90 0.0402 0.20 35.65

Table 4: Ranking regret at k is up to 69x more closely bounded by 2*XMAD@2k compared to the traditional MAD as proposed in Section 3.
k = 5, "-p": pointwise, "-l": labelwise and "-t": use of tail classifiers. Please refer to the text for details.

Method

WP-regret-p

@k

2*XMAD-p

@2k

MAD

2*XMAD-p@2k /

WP-regret-l@k

MAD /

WP-regret-p@k

EURLex-4K

PfastreXML 0.1237 0.2481 1.8667 2.01 15.09

Parabel 0.1166 0.5696 3.9622 4.89 33.98

LEML 0.1527 0.2739 2.0779 1.79 13.61

1-vs-all-LS 0.1076 0.2468 2.696 2.29 25.06

RankSVM 0.1202 2.1303 37.7822 17.72 314.33

DiSMEC 0.1107 0.5733 4.9883 5.18 45.06

XReg 0.1134 0.2432 1.2284 2.14 10.83
XReg-t 0.1119 0.3141 3.4887 2.81 31.18

Wiki10-31K

PfastreXML 0.4861 0.8862 9.3561 1.82 19.25

Parabel 0.4990 1.1784 10.1523 2.36 20.35

LEML 0.5027 0.8886 25.5622 1.77 50.85

1-vs-all-LS 0.4515 0.8492 34.1409 1.88 75.62

RankSVM 0.4714 2.2960 75.4734 4.87 160.10

DiSMEC 0.4878 1.1519 80.3084 2.36 164.63

XReg 0.4802 0.8938 6.0104 1.86 12.52
XReg-t 0.4475 0.8741 32.2013 1.95 71.96

Method

WP-regret-l

@k

2*XMAD-l

@2k

MAD

2*XMAD-l@2k /

WP-regret-l@k

MAD /

WP-regret-l@k

YahooMovie-8K

PfastreXML 0.5665 0.8875 8.4893 1.57 14.99

Parabel 0.5693 0.8850 6.3913 1.55 11.23
LEML 0.4933 0.9571 36.0738 1.94 73.13

1-vs-all-LS 0.4943 0.9288 47.1887 1.88 95.47

RankSVM 0.4738 2.0235 76.6099 4.27 161.69

DiSMEC 0.4760 0.9003 38.0254 1.89 79.89

XLR 0.6013 1.0423 17.0795 1.73 28.40

XReg 0.4676 0.8847 6.7809 1.89 14.50

XReg-t 0.4664 0.8964 12.1071 1.92 25.96

DSA-130K

PfastreXML 0.0289 0.0500 0.3291 1.73 11.39

Parabel 0.0266 0.1230 0.8827 4.62 33.18

LEML 0.0361 0.0486 0.2828 1.35 7.83

DiSMEC 0.0265 0.1547 4.0878 5.84 154.26

XLR 0.0402 0.9157 34.429 22.78 856.44

XReg 0.0259 0.0519 0.2482 2.00 9.58
XReg-t 0.0256 0.0787 0.5862 3.07 22.90

Table 5: The ablation study of Parabel leading to per-label XReg-t
which clearly outperforms its predecessors on ranking metrics.

Method

Rating-l@5

(%)

AUC-l@5

(%)

CTR-l@5

(%)

AUC-l@5

(%)

Rating-l@5

(%)

AUC-l@5

(%)

YahooMovie-8K DSA-130K MovieLens-138K

Parabel-logloss 8.99 32.00 33.58 28.46 2.36 48.20

Pointwise XReg 9.47 34.00 34.59 27.13 3.89 52.35

Labelwise XReg 25.86 35.00 35.66 28.51 48.94 66.99

Labelwise XReg-t 26.05 35.33 36.32 28.45 49.29 67.36

Table 6: XReg significantly improves query coverage and revenue
over the existing ensemble for DSA on Bing. Note: RPM: Revenue
Per Million impressions, Cov: Query Coverage, CY: Click Yield, IY:
Impression Yield, BR: Bounce Rate

Method Relative Relative Relative Relative Relative Relative

RPM (%) Cov (%) CY (%) IY (%) CTR (%) BR (%)

Pointwise XReg 106 - 105 105 100 100

Labelwise XReg 158 127 148 150 98 100

coverage by 27% along with a 48% and 50% increase in click yield

and impression yields at a cost of only 2% reduction in CTR.

6 CONCLUSIONS
This paper proposed a new learning paradigm called eXtreme Re-

gression (XR) which provides a scalable solution to many real-world

recommendation and ranking problems such as tagging, recom-

mendation, DSA etc. XR involves learning to accurately predict

the numerical relevance weights of an extremely large number of

labels with respect to a data point. These weights not only induce

an accurate ranking but are also useful for subsequent filtering

and re-ranking steps. To effectively solve XR problems, this pa-

per also develops a new evaluation metric called XMAD@k and

a new algorithm called XReg. XReg consistently outperforms the

state-of-the-art extreme classifiers as well as large-scale regressors

and rankers in terms of ranking accuracies and efficiently scales

to datasets with millions of data points and labels. Deployment of

XReg on DSA in Bing resulted in a relative gain of 58% in revenue

and 27% in query coverage.

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

7 ACKNOWLEDGEMENTS
We are grateful to Kunal Dahiya, Prateek Jain, Nagarajan Natarajan,

Deepak Saini and Harsha Vardhan Simhadri for helpful discussions,

feedback and computing resources.

REFERENCES
[1] [n. d.]. Code and datasets for XReg. http://manikvarma.org/code/XReg/download.

html

[2] [n. d.]. MovieLens 20M Dataset. https://grouplens.org/datasets/movielens/20m/.

[3] [n. d.]. Yahoo! Movies User Ratings and Descriptive Content Information, v.1.0.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r,.

[4] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label learning

with millions of labels: Recommending advertiser bid phrases for web pages. In

WWW.

[5] R. Babbar and B. Schölkopf. 2017. Dismec: Distributed sparse machines for

extreme multi-label classification. In WSDM.

[6] R. Babbar and B. Schölkopf. 2018. Adversarial Extreme Multi-label Classification.

arXiv preprint arXiv:1803.01570 (2018).
[7] R. Bekkerman, M. Bilenko, and J. Langford. 2011. Scaling up machine learning:

Parallel and distributed approaches. Cambridge University Press.

[8] K. Bhatia, K. Dahiya, H. Jain, Y. Prabhu, and M. Varma. 2019. The Extreme

Classification Repository: Multi-label Datasets & Code. http://manikvarma.org/

downloads/XC/XMLRepository.html

[9] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings

for Extreme Multi-label Classification. In NeurIPS.
[10] T. Chai and R. R. Draxler. 2014. Root mean square error (RMSE) or mean absolute

error (MAE).

[11] Y. Chen and H. Lin. 2012. Feature-aware label space dimension reduction for

multi-label classification. In NeurIPS.
[12] Minhao Cheng, Ian Davidson, and Cho-Jui Hsieh. 2018. Extreme Learning to

Rank via Low Rank Assumption. In ICML.
[13] Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski, M. R. Mediano, and B. Pang.

2010. Using landing pages for sponsored search ad selection. In WWW.

[14] M. Cissé, N. Usunier, T. Artières, and P. Gallinari. 2013. Robust Bloom Filters for

Large MultiLabel Classification Tasks. In NeurIPS.
[15] K. Dembczyński,W. Kotłowski,W.Waegeman, R. Busa-Fekete, and E. Hüllermeier.

2016. Consistency of Probabilistic Classifier Trees. In Machine Learning and
Knowledge Discovery in Databases.

[16] C. Dhanjal, R. Gaudel, and S. Clémençon. 2015. Collaborative filtering with

localised ranking. In AAAI.
[17] J Engel. 1988. Polytomous logistic regression. Statistica Neerlandica (1988).
[18] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. 2008. LIBLINEAR:

A library for large linear classification. JMLR (2008).

[19] C. Guo, A. Mousavi, X. Wu, D. N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar.

2019. Breaking the Glass Ceiling for Embedding-Based Classifiers for Large

Output Spaces. In NeurIPS.
[20] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History

and Context. ACM Trans. Interact. Intell. Syst. (2015), 19:1–19:19.
[21] R. Herbrich, T. Graepel, and K. Obermayer. 1999. Support vector learning for

ordinal regression. (1999).

[22] D. Hsu, S. Kakade, J. Langford, and T. Zhang. 2009. Multi-Label Prediction via

Compressed Sensing. In NeurIPS.
[23] J. Hu and P. Li. 2018. Collaborative Multi-objective Ranking. In PCIKM.

[24] P. S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. P. Heck. 2013. Learning deep

structured semantic models for web search using clickthrough data. In CIKM.

[25] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. 2019. Slice: Scalable

Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. In

WSDM.

[26] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for

Recommendation, Tagging, Ranking and Other Missing Label Applications. In

KDD.
[27] K. Järvelin and J. Kekäläinen. 2002. Cumulated gain-based evaluation of IR

techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002).
[28] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E.

Hüllermeier. 2016. Extreme F-measure Maximization Using Sparse Probability

Estimates. In ICML.
[29] K. S. Jones, S. Walker, and S. E. Robertson. 2000. A probabilistic model of informa-

tion retrieval: development and comparative experiments. Inf. Process. Manage.
(2000).

[30] S. M. Kakade, K. Sridharan, and A. Tewari. 2009. On the complexity of linear

prediction: Risk bounds, margin bounds, and regularization. In NeurIPS.
[31] M. G. Kendall. 1938. A new measure of rank correlation. Biometrika 30 (1938).
[32] D. Kocev, C. Vens, J. Struyf, and S. Dzeroski. 2007. Ensembles of multi-objective

decision trees. In ECML.
[33] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.

The annals of mathematical statistics 22, 1 (1951), 79–86.

[34] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. 2018. Fast-

GRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural

Network.. In NeurIPS.
[35] C. Lee and C. Lin. 2014. Large-scale linear ranksvm. Neural computation 26, 4

(2014), 781–817.

[36] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. 2014. Local collaborative

ranking. In WWW.

[37] Z. Lin, G. Ding, M. Hu, and J. Wang. 2014. Multi-label Classification via Feature-

aware Implicit Label Space Encoding. In ICML.
[38] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label

Text Classification. In SIGIR.
[39] J. McAuley and J. Leskovec. 2013. Hidden factors and hidden topics: understand-

ing rating dimensions with review text. In RecSys.
[40] E. L. Mencia and J. Fürnkranz. 2008. Efficient pairwise multilabel classification

for large-scale problems in the legal domain. In ECML.
[41] P. Mineiro and N. Karampatziakis. 2015. Fast Label Embeddings for Extremely

Large Output Spaces. In ECML.
[42] A. Niculescu-Mizil and E. Abbasnejad. 2017. Label ‘s for Large Scale Multilabel

Classification. In AISTATS.
[43] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and I. S. Dhillon. 2015. Preference

completion: Large-scale collaborative ranking from pairwise comparisons. In

ICML.
[44] I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artières, G. Paliouras, É. Gaussier, I.

Androutsopoulos, M. R. Amini, and P. Gallinari. 2015. LSHTC: A Benchmark for

Large-Scale Text Classification. (2015). http://arxiv.org/abs/1503.08581

[45] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.

2018. Extreme multi-label learning with label features for warm-start tagging,

ranking and recommendation. In WSDM.

[46] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. 2018. Parabel: Parti-

tioned label trees for extreme classification with application to dynamic search

advertising. In WWW.

[47] Y. Prabhu and M. Varma. 2014. FastXML: A fast, accurate and stable tree-classifier

for extreme multi-label learning. In KDD.
[48] B. Pradel, N. Usunier, and P. Gallinari. 2012. Ranking With Non-Random Missing

Ratings: Influence Of Popularity And Positivity on Evaluation Metrics. In RecSys.
[49] S. Ravi, A. Z. Broder, E. Gabrilovich, V. Josifovski, S. Pandey, and B. Pang. 2010.

Automatic generation of bid phrases for online advertising. In WSDM.

[50] D. Sculley. 2009. Large scale learning to rank. (2009).

[51] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. Learning semantic represen-

tations using convolutional neural networks for web search. In WWW.

[52] S. Si, H. Zhang, S. S. Keerthi, D. Mahajan, I. S. Dhillon, and C. J. Hsieh. 2017.

Gradient Boosted Decision Trees for High Dimensional Sparse Output. In ICML.
[53] A. J. Smola and B. Schölkopf. 2004. A tutorial on support vector regression.

Statistics and computing (2004).

[54] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme

Multi-label Classification. In KDD.
[55] Y. Wang, L. Wang, Y. Li, D. He, and T. Liu. 2013. A theoretical analysis of NDCG

type ranking measures. In COLT.
[56] G. S. Watson et al. 1967. Linear least squares regression. The Annals of Mathe-

matical Statistics 38, 6 (1967), 1679–1699.
[57] X. Wei and W. B. Croft. 2006. LDA-based document models for ad-hoc retrieval.

In SIGIR.
[58] J. Weston, S. Bengio, and N. Usunier. 2011. Wsabie: Scaling Up To Large Vocabu-

lary Image Annotation. In IJCAI.
[59] J. Weston, A. Makadia, and H. Yee. 2013. Label Partitioning For Sublinear Ranking.

In ICML.
[60] L. Wu, C. Hsieh, and J. Sharpnack. 2018. SQL-Rank: A Listwise Approach to

Collaborative Ranking. In ICML.
[61] C. Xu, D. Tao, and C. Xu. 2016. Robust Extreme Multi-label Learning. In KDD.
[62] I. E. H. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. 2017.

PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. In

KDD.
[63] I. E. H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. S. Dhillon. 2016. PD-

Sparse: A primal and dual sparse approach to extreme multiclass and multilabel

classification. In ICML.
[64] W. T. Yih, J. Goodman, and V. R. Carvalho. 2006. Finding advertising keywords

on web pages. In WWW.

[65] D. Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, Hua Ouyang, Jianhui Chen, Changsung

Kang, H. Deng, C. Nobata, et al. 2016. Ranking relevance in yahoo search. In

PKDD.
[66] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu. 2019. AttentionXML:

Label Tree-based Attention-Aware Deep Model for High-Performance Extreme

Multi-Label Text Classification. In NeurIPS.
[67] H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. 2014. Large-scale Multi-label Learning

with Missing Labels. In ICML.
[68] W. Zhang, D. Wang, G. Xue, and H. Zha. 2012. Advertising Keywords Recom-

mendation for Short-Text Web Pages Using Wikipedia. ACM TIST (2012).

[69] M. Zhu. 2004. Recall, Precision and Average Precision.

http://manikvarma.org/code/XReg/download.html
http://manikvarma.org/code/XReg/download.html
https://grouplens.org/datasets/movielens/20m/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://arxiv.org/abs/1503.08581

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

Algorithm 1 XReg Labelwise Prediction

Input:
Test data points {xi }Mi=1
Trained tree T

Required no. of most relevant test points per label N
Fraction of test points relevant for each node

{ f rac(n)}
|nodes(T) |
n=1

Multiplicative factor F # F ∗ f rac(n) most relevant test points are passed

down to node n

Output:
Predicted test points for each label {pred(l)}Ll=1

Initialize:
points(1) ← {1, · · · ,M} # points(n) is set of test points passed to node n

ẑi1 = 1.0 ∀i ∈ {1, · · · ,M} # All test points visit the root node with

probability 1

for n ∈ {1, · · · , |nodes(T)|} do # Breadth-first exploration of the tree

if n ∈ internalnodes(T) then
for n′ ∈ children(n) do # Iterate over children nodes of n

for i ∈ points(n) do
ẑin′ ← ẑin ∗Siдmoid(w⊤n′xi) # Siдmoid (x) = 1

1+exp(−x)

end for
points(n′) ← retain top({ẑin′}i ∈points(n), F ∗

f rac(n′))
end for

else if n ∈ lea f nodes(T) then
for l ∈ labels(n) do # Iterate over labels in leaf node n

for i ∈ points(n) do
ŷil ← ẑin ∗ Siдmoid(wl⊤xi)

end for
pred(l) ← retain top({ŷil }i ∈points(n),N)

end for
end if

end for
Note: In case there are multiple trees in ensemble, the probability

predictions estimated by all trees are averaged for a each test

point, label pair and top N test points are outputted for each

label

return {pred(l)}Ll=1

procedure retain top({si }
I
i=1,N)

R ← argsort({si }
I
i=1, comparator← si1 > si2) # Sort the

test points in decreasing order of node or label probabilities

B ← {R[1], ..,R[N]}
return B
end procedure

A THEOREMS AND PROOFS
Lemma A.1. Given any true and predicted relevance weight vectors

y, ŷ ∈ [0,∞)L , the following inequality hold true:

0 ≤
M

2

≤ XMAD@2k(ŷi , yi) ≤ XRMSE@2k(ŷi , yi) (7)

with,M =max(Ranking-error@k, Regression-error@k) (8)

Proof. The ranking and regression errors are defined as follows

Ranking-error@k(ŷi , yi) =
1

k

∑
l ∈S (yi ,k)

yil −
1

k

∑
l ∈S (ŷi ,k)

yil (9)

Regression-error@k(ŷi , yi) =
1

k

∑
l ∈S (ŷi ,k)

|ŷil − yil | (10)

Since S(yi ,k) picks thek largest values ofyil , Ranking-error@k(ŷi , yi) ≥
0 always. Due to summation over only non-negative values, Regression-

error@k(ŷi , yi) ≥ 0 always too, which together establish the in-

equality 0 ≤ M
2
.

Now, let’s prove that
M
2
≤ XMAD@2k(ŷ, y). First, we begin by

showing that Ranking-error@k(ŷi , yi) ≤ 2XMAD@2k(ŷ, y). With-

out loss of generality, let’s assume that the sets S(yi ,k) and S(ŷi ,k)
are non-overlapping. In the contrary case, the same arguments

can be applied to another predicted set S ′ created by replacing the

overlapping labels in S(ŷi ,k) with different labels having smaller

ŷil values. Thus bounding ranking error on S ′ will also bound it

on S(ŷi ,k). Now,

1

k

∑
l ∈S (yi ,k)

yil −
1

k

∑
l ∈S (ŷi ,k)

yil (11)

≤
1

k

∑
l ∈S (yi ,k)

yil −
1

k

∑
l ∈S (ŷi ,k)

yil +
1

k

∑
l ∈S (ŷi ,k)

ŷil −
1

k

∑
l ∈S (yi ,k)

ŷil

(12)

≤
1

k

∑
l ∈S (yi ,k)

eil +
1

k

∑
l ∈S (ŷi ,k)

eil where, eil = |yil − ŷil | (13)

≤
1

k

∑
l ∈S (ei ,2k)

eil (14)

= 2MAD@2k(ŷ, y) (15)

Bounding the regression error is quite straightforward, hence we

skip the proof here.

Finally, the XMAD@2k(ŷi , yi) ≤ XRMSE@2k(ŷi , yi) property
follows by using Jensen’s inequality on the square function which

is concave. □

Theorem A.2. Given thatyl =
∏H

h=1 zlh and ŷl =
∏H

h=1 ẑlh and
under the standard unvisited node assumption of Parabel

DKL(yl | |ŷl) ≤
H∑
h=1

slhDKL(zlh | |ẑlh) where slh =
h∏
˜h=1

zl (˜h−1) (16)

Proof. We assume that 0 log
0

p = 0 where 0 ≤ p ≤ 1. We also

use the unvisited node assumption in Parabel, P(zlh = 0|zl (h−1) =
0) = 1, which means that a child of an unvisited node is never

visited.

Let Iyl ∈ {0, 1} be the probabilistic variable which says whether

label l is relevant to a data point in reference, i.e. P(Iyl = 1) = yl and
P(Iyl = 0) = 1 − yl . Similarly let Izlh ∈ {0, 1} be the probabilistic
variable which says whether the data point visits node nlh or not,

i.e. P(Izlh = 1) = zlh and P(Izlh = 0) = 1 − zlh .
Now, since the relevance of label l to a data point is equivalent

whether the label path is traversed in the tree by the data point:

yl = zlH and P(Iyl) = P(IzlH , · · · , Izl1) hold true.

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

Table 7: XReg has the best or close to the best ranking and regression performance across all the datasets compared to state-of-the-art extreme
classifiers and large-scale regressors and rankers. Re-ranking with tail classifiers (XReg-t) further improves the accuracies. PSP@k , CTR@k
and Rating@k are variants of WP@k as discussed in Section 3. "-p": pointwise, "-l": labelwise.

Method

PSP-p@1

(%)

PSP-p@3

(%)

Tau-p@1

(%)

Tau-p@3

(%)

nDCG-p@5

(%)

XRMSE-p@5

BibTex

PfastreXML 52.43 53.41 41.31 48.36 56.41 0.3813

Parabel 50.88 52.42 36.57 46.28 54.58 0.4104

LEML 51.30 52.17 39.32 47.31 54.10 0.3935

1-vs-all-LS 53.50 55.10 39.91 49.31 57.30 0.3834

RankSVM 49.31 51.79 39.22 47.07 54.97 0.7228

DiSMEC 50.88 52.52 36.66 46.34 54.54 0.4104

ProXML 50.10 52.00 - - - -

XReg 49.66 52.66 38.48 47.09 54.98 0.3958

XReg-t 49.86 53.04 38.68 47.33 55.14 0.3805

EURLex-4k

PfastreXML 40.16 43.07 46.97 46.50 43.64 0.2188

Parabel 36.36 44.04 40.96 46.03 44.78 0.4673

LEML 27.20 30.15 30.47 33.62 30.73 0.2406

1-vs-all-LS 47.02 50.85 54.12 52.45 50.82 0.2006
RankSVM 39.52 43.82 51.23 49.79 44.49 1.2093

DiSMEC 37.58 45.92 42.32 47.56 46.73 0.4771

ProXML 45.20 48.50 - - -

XReg 44.00 47.44 51.69 50.51 47.99 0.2127

XReg-t 45.23 48.51 53.06 51.59 48.89 0.2338

Wiki10-31K

PfastreXML 12.94 14.80 11.93 17.53 15.13 0.5925

Parabel 11.66 12.73 13.36 17.18 13.13 0.7201

LEML 11.25 12.38 15.29 18.40 12.58 0.5938

1-vs-all-LS 26.78 23.06 36.59 29.50 23.01 0.5691
RankSVM 21.06 18.99 32.63 27.58 19.05 1.2279

DiSMEC 11.91 14.09 14.41 19.47 14.63 0.7140

XReg 17.33 16.73 26.76 25.01 16.98 0.5931

XReg-t 25.92 23.56 38.72 33.09 23.40 0.5722

WikiLSHTC-325K

PfastreXML 25.67 26.57 31.11 34.15 27.09 0.1922

Parabel 26.71 33.16 28.05 36.99 33.48 0.3130

DiSMEC 29.10 35.60 - - - -

ProXML 34.80 37.70 - - - -

XReg 32.36 34.36 36.59 39.10 35.13 0.1877
XReg-t 36.85 37.98 41.41 41.96 38.87 0.3241

Amazon-670K

PfastreXML 24.52 26.65 28.18 29.30 27.36 0.4356

Parabel 25.43 29.45 20.54 26.56 30.72 0.4640

DiSMEC 25.82 30.20 20.40 26.77 31.89 0.4582

ProXML 30.80 32.80 - - - -

XReg 29.12 31.19 31.69 32.63 32.01 0.4189
XReg-t 31.16 32.71 33.83 34.28 33.34 0.4639

Method

CTR-p@1

(%)

CTR-p@3

(%)

Tau-p@1

(%)

Tau-p@3

(%)

nDCG-p@5

(%)

XRMSE-p@5

SSA-130K

PfastreXML 21.34 25.24 22.33 23.1 25.56 0.0817
Parabel 21.95 28.87 26.98 28.83 29.22 0.1636

LEML 3.79 5.11 7.2 7.61 5.50 0.0835

RankSVM 8.92 10.96 13.14 13.74 11.51 2.7945

DiSMEC 21.36 28.41 25.68 27.64 28.85 0.1746

XReg 24.69 29.02 27.52 27.71 29.64 0.0826

XReg-t 24.7 29.22 27.32 27.83 29.93 0.1225

Method

Rating-l@1

(%)

Rating-l@3

(%)

Tau-l@1

(%)

Tau-l@3

(%)

nDCG-l@5

(%)

XRMSE-l@5

YahooMovie-8K
PfastreXML 11.5 9.9 22.29 20.21 10.36 0.7047

Parabel 11.28 9.73 30.11 29.08 10.03 0.7054

LEML 21.33 21.06 28.81 29.5 21.55 0.6851

1-vs-all-LS 22.75 21.02 34.9 32.59 21.76 0.6791

RankSVM 24.89 23.16 36.99 34.7 24.53 1.0613

DiSMEC 23.76 23.19 34.62 33.45 24.10 0.6826

XLR 3.87 4.2 12.44 11.78 4.40 0.7182

XReg 26.49 24.77 39.02 35.8 25.76 0.6944

XReg-t 26.53 24.86 39.28 36.42 25.90 0.6772

MovieLens-138K

PfastreXML 9.03 7.82 25.92 23.88 7.63 0.9253

Parabel 5.95 4.25 40.67 39.08 4.03 0.9254

LEML 46.51 44.89 69.58 66.96 43.97 0.8773

1-vs-all-LS 46.94 43.88 43.17 69.28 65.92 0.8882

DiSMEC 50.85 47.05 65.45 62.93 46.49 0.8909

XLR 14.49 10.31 31.61 21.5 10.55 0.9184

XReg 54.65 50.83 71.59 68.83 50.16 0.8793

XReg-t 55.04 51.21 72.07 69.3 50.52 0.8337

Method

CTR-l@1

(%)

CTR-l@3

(%)

Tau-l@1

(%)

Tau-l@3

(%)

nDCG-l@5

(%)

XRMSE-l@5

DSA-130K

PfastreXML 18.15 23.7 26.77 30.99 23.93 0.0647
Parabel 19.97 28.06 23.44 26.04 28.13 0.1091

LEML 3.94 6.9 5.35 6.46 7.54 0.0657

XLR 0.03 0.07 0.1 0.1 0.07 0.4837

DiSMEC 18.94 27.52 22.20 25.25 27.70 0.1201

XReg 22.07 29.73 23.73 26.08 29.95 0.0654

XReg-t 22.41 30.1 23.98 26.13 30.43 0.0744

DSA-1M

Parabel 25.78 33.15 27.93 29.38 33.28 0.1218

XReg 26.75 33.06 28.67 29.51 33.36 0.0806
XReg-t 27.83 34.27 29.68 30.18 34.55 0.0892

Due the fact that x log x
y is a convex function, it is easy to show

that the KL-divergence between 2 marginal distributions is upper

bounded by the KL-divergence of the corresponding joint distribu-

tions.

DKL(P(Iyl)| |P(Iŷl)) = DKL(P(IzlH)| |P(IẑlH)) (17)

≤ DKL(P(IzlH , · · · , Izl1)| |P(IẑlH , · · · , Iẑl1)) (18)

By using chain rule of KL-Divergence: (19)

= DKL(P(Izl (H−1) , · · · , Izl1)| |P(Iẑl (H−1) , · · · , Iẑl1)) (20)

+ P(Izl (H−1) = 1)DKL(P(IzlH |Izl (H−1) = 1)| |P(IẑlH |Iẑl (H−1) = 1))

(21)

+ P(Izl (H−1) = 0)DKL(P(IzlH |Izl (H−1) = 0)| |P(IẑlH |Iẑl (H−1) = 0))

(22)

By unvisited node assumption, (23)

Izl (H−1) = 0 =⇒ IzlH = 0 and Iẑl (H−1) = 0 =⇒ IẑlH = 0 (24)

hence: (25)

= DKL(P(Izl (H−1) , · · · , Izl1)| |P(Iẑl (H−1) , · · · , Iẑl1)) (26)

+ P(Izl (H−1) = 1)DKL(P(IzlH |Izl (H−1) = 1)| |P(IẑlH |Iẑl (H−1) = 1))

(27)

= DKL(P(Izl (H−1) , · · · , Izl1)| |P(Iẑl (H−1) , · · · , Iẑl1)) (28)

+ (

H−1∏
˜h=1

zlh)
(
zlh log

zlh
ẑlh
+ (1 − zlh) log

1 − zlh
1 − ẑlh

)
(29)

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

Table 8: Hyperparameter tuning for # trees (T), Max leaf labels (M), Beam width (P) and points reaching leaf node per label in labelwise
prediction of XReg. Note: The hyperparameters in bold face are finally chosen for the default setting.

#

trees

WP@5

(%)

Tau@5

(%)

XMAD@5

Training

time (hrs)

Test time

/point (ms)

Model

Size (GB)

EURLex-4K (pointwise)

1 48.05 51.14 0.1899 0.0307 0.3911 0.0125

3 49.72 52.86 0.1849 0.0642 1.2899 0.0378

5 50.25 53.24 0.1836 0.0995 2.638 0.0629

7 50.44 53.42 0.1831 0.1543 3.4703 0.0881

Amazon-670K (pointwise)

1 30.50 32.31 0.3956 0.6788 0.6551 1.1478

3 33.24 34.72 0.3869 1.4925 2.4633 3.4186

5 34.00 35.45 0.3847 2.1499 6.9283 5.6978

7 34.37 35.86 0.3837 3.4298 8.564 7.9768

DSA-130K (labelwise)

1 33.64 27.52 0.0448 0.2165 1.8552 0.2624

3 35.66 28.51 0.0439 0.4570 7.4715 0.7871

5 36.24 28.94 0.0436 0.6836 16.3785 1.3117

7 36.55 29.2 0.0435 1.0897 21.7585 1.8358

Beam

width

WP@5

(%)

Tau@5

(%)

XMAD@5

Training

time (hrs)

Test time

/point (ms)

Model

Size (GB)

EURLex-4K (pointwise)

5 49.6 52.76 0.1858 0.0627 0.6869 0.0378

10 49.72 52.86 0.1849 0.0642 1.2899 0.0378

20 49.7 52.86 0.1847 0.0638 2.4982 0.0378

30 49.71 52.86 0.1847 0.0682 3.8542 0.0378

Amazon-670K (pointwise)

5 32.77 34.37 38.77 1.3654 1.4467 3.4186

10 33.24 34.72 0.3869 1.4925 2.4633 3.4186

20 33.38 34.82 0.3866 1.3721 4.8842 3.4186

30 33.4 34.83 0.3866 1.5508 9.1728 3.4186

Max leaf

labels

WP@5

(%)

Tau@5

(%)

XMAD@5

Training

time (hrs)

Test time

/point (ms)

Model

Size (GB)

EURLex-4K (pointwise)

20 49.34 52.75 0.1845 0.0323 0.4694 0.0494

50 49.6 52.71 0.1859 0.0458 0.8198 0.0428

100 49.72 52.86 0.1849 0.0642 1.2899 0.0378

200 50.11 53.05 0.1846 0.1031 2.6368 0.0337

Amazon-670K (pointwise)

20 32.26 33.96 0.3869 0.7514 0.7051 6.0288

50 32.89 34.46 0.3868 1.1171 1.7382 4.124

100 33.24 34.72 0.3869 1.4925 2.4633 3.4186

200 33.56 34.99 0.3866 2.1426 4.3993 2.9268

DSA-130K (labelwise)

20 34.76 28.2 0.0448 0.2678 2.279 0.9867

50 35.21 28.42 0.0443 0.3516 4.8664 0.8764

100 35.66 28.51 0.0439 0.4570 7.4715 0.7871

200 35.96 28.63 0.04351 0.6925 8.9019 0.7128

per-label

points

WP@5

(%)

Tau@5

(%)

XMAD@5

Training

time (hrs)

Test time

/point (ms)

Model

Size (GB)

DSA-130K (labelwise)

5 35.56 28.41 0.0438 0.4989 4.3407 0.7871

10 35.66 28.51 0.0439 0.4570 7.4715 0.7871

20 35.68 28.54 0.0438 0.5164 11.1622 0.7871

30 35.68 28.54 0.0438 0.5135 11.5373 0.7871

0.0 0.2 0.4 0.6 0.8 1.0Recall
0.0

0.2

0.4

Pr
ec

isi
on

EURLex-4K Precision-Recall curve
Parabel
XReg
XReg-Zero

0.0 0.2 0.4 0.6 0.8 1.0Recall
0.0

0.1

0.2

Pr
ec

isi
on

Wiki10-31K Precision-Recall curve
Parabel
XReg
XReg-Zero

0.0 0.2 0.4 0.6 0.8 1.0Recall
0.00

0.25

0.50

0.75

Pr
ec

isi
on

YahooMovie-8K Precision-Recall curve
Parabel
XReg
XReg-Zero

0.0 0.2 0.4 0.6 0.8 1.0Recall
0.0

0.2

0.4

Pr
ec

isi
on

DSA-130K Precision-Recall curve
Parabel
XReg
XReg-Zero

Figure 1: Precision-Recall curves showing thatXReg is consistently better thanXReg-Zero andParabel approaches for precision recall tradeoff.

Extreme Regression for Dynamic Search Advertising WSDM ’20, February 3–7, 2020, Houston, TX, USA

By recursively applying above simplification (30)

at higher level tree nodes: (31)

=

H∑
h=1

slh

(
zlh log

zlh
ẑlh
+ (1 − zlh) log

1 − zlh
1 − ẑlh

)
(32)

The above upper bound is exactly the quantity that XReg minimizes

during training by assuming logistic model for probability estimates.

□

Lemma A.3. XReg’s overall training objective minimizes an upper
bound over XMAD@k for all k , with the bound being tighter for
smaller k values.

Proof. As presented in the next theorem, XRegminimizes an up-

per bound on XMAD@1 =maxLl=1 |yl − ŷl |. Note that XMAD@k ≤
XMAD@1∀k . Furthermore, as k increases, XMAD@k averages

smaller and smaller errors compared the largest errors, therefore

the bound is tighter for smaller values of k which are close to

k = 1. □

Theorem A.4. When each data point has at mostO(logL) positive
labels, the expected WP@k regret and XMAD@k error suffered by
XReg’s pointwise inference algorithm are bounded by:

O(log2 L

√
W√
Np

√
1 +

√
5 log

3L

δ
)

with probability at least 1−δ , where N is the total training points, L is
the number of labels,W is themaximumnorm across all node classifier
vectors and p is the minimum probability density of x distribution
that any tree node receives.

Proof. The outline of the proof is as follows. First, we see that

the WP@k regret and XMAD@k error for a given data point are

bounded, in a straight forward manner, by XReg’s node and label

classifier objectives over that data point. For good overall generaliza-

tion performance, each classifier needs to receive enough training

samples as well as learn to generalize well from those samples. We

derive probability bounds for those events simultaneously. While

these steps together give the regret bounds for the classifier during

exact prediction (i.e., calculate the scores for all labels for a given
test point), the regret suffered by the greedy, beam-search algorithm

might actually be more than that. Therefore, in a follow-up step,

we also give a bound for this approximate algorithm which is only

worse by O(logL). This gives us the final sample complexities.

By Lemma (7), both
1

2
WP@k and XMAD@2k are bounded by

XRMSE@2k which is in turn bounded by max
L
l=1 |yl − ŷl |.

Now, using Pinsker’s inequality [15],

L
max

l=1
|yl − ŷl | (33)

≤
L

max

l=1

√
1

2

DKL(yl , ŷl) (34)

=

√
L

max

l=1

1

2

DKL(yl , ŷl) (35)

From (16): (36)

≤

√√√
L

max

l=1

1

2

H∑
h=1

slhDKL(zlh | |ẑlh) (37)

≤

√
1

2

∑
n:zn−1>0

snDKL(zn | |ẑn) (38)

where zn−1 is value in parent of node n (39)

(40)

□

For good generalization performance, we need a small expected

regret with respect to distribution over data point x:

Ex
L

max

l=1
|yl − ŷl | (41)

By concavity of square root function: (42)

≤

√
1

2

Ex
∑

n:zn−1>0
snDKL(zn | |ẑn) (43)

Nowwe try to bound the above quantity by relating it to training

error.

Let pn be the expected fraction of the probability density over

x that a tree node n receives. This is precisely the density of data

points which have at least one label with non-zero relevance in

the subtree rooted at node n. Now, let’s compute the probability

that the node n receives at least Npn (1 − k) training points where
N is the number of total training points and Npn is the expected

number of training points that node n would receive. By using

chernoff bound, this probability is at least 1 − exp(−
pnNk2

2
). Now,

the probability that all tree nodes n would simultaneously receive

at least Npn (1−k) training points is at least 1−L exp(−
pNk2

2
) since

there are at most L tree nodes and each has x density of at least p.
Now, we use the result in [30]. Since the logistic loss used for

modeling probabilities in XReg is lipschitz continuous with constant

1 and logistic regression parameters are bounded by normW , and

x is bounded by norm 1, for any regressor in XReg,

Ex snDKL(zn , ẑn) ≤ ˆEx snDKL(zn , ẑn) + 2W

√
1

Np(1 − k)
+ 2W∆

(44)

with probability at least 1−exp(−2Np(1−k)∆2)where ˆExDKL(zn , ẑn)
is the average training error in node n which is 0 as per our assump-

tion.

WSDM ’20, February 3–7, 2020, Houston, TX, USA Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma

Combining the above reasonings, along with the fact that there

are at most 2L regressors in XReg, we can conclude that with prob-

ability of at least 1 − L exp(−
pNk2

2
) − 2L exp(−2Np(1 − k)∆2), each

node has expected error bounded simultaneously as below:

Ex snDKL(zn , ẑn) ≤ 2W

√
1

Np(1 − k)
+ 2W∆ (45)

Now, note that k can be given any value in [0, 1] and the above

bounds vary accordingly. We choose to give k = 2∆(
√
∆2 + 1 − ∆).

Then, with probability at least 1 − 3L exp(−2(
√
(2) − 1)2Np∆2), for

all regressors

Ex snDKL(zn , ẑn) ≤ 2W

√
1

Np(1 − 2∆(
√
(∆2 + 1) − ∆))

+ 2W∆

(46)

In other words, with probability at least 1 − δ over the training

samples, for all regressors,

Ex snDKL(zn , ẑn) ≤ 2W

√
1

Np(1 − 2∆(
√
(∆2 + 1) − ∆))

(47)

+ 2W

√
1

2(
√
2 − 1)2Np

log

(
3L

δ

)
(48)

where ∆ =

√
1

2(
√
2−1)2Np

log

(
3L
δ

)
. Now since ∆ → 0 as N → ∞,

for large enough N , the above bound can be approximated to

Ex snDKL(zn , ẑn) ≤ 2W

√
1

Np
+ 2W

√
1

2(
√
2 − 1)2Np

log

(
3L

δ

)
(49)

From (50),

Ex
L

max

l=1
|yl − ŷl | (50)

≤

√
1

2

Ex
∑

n:zn−1>0
snDKL(zn | |ẑn) (51)

Since any x has on average logL non-zero labels and (52)

since height of the tree is logL (53)

the number of nodes with zn−1 > 0 for any x is on average log
2 L, hence:
(54)

≤

√√√
log

2 L

2

(
2W

√
1

Np
+ 2W

√
1

2(
√
2 − 1)2Np

log

(
3L

δ

))
(55)

≤ logL

√
W√
Np

√
1 +

√
5 log

(
3L

δ

)
(56)

with probability at least 1 − δ over training samples.

The above bound holds for exact prediction where all label prob-

abilities are computed for a given test point. Now we analyse the

extra regret due to the greedy, approximate, beam search based,

pointwise inference algorithm used by XReg.

During beam-search, a point traverses the tree level-by-level. At

each tree level, a small shortlist of around k = 10 most probable

nodes, i.e. nodes with most relevant labels their subtrees, are main-

tained and extended on to next level. If accurate label relevances

were available, then beam search would always return the best set

of labels, since each node’s zn variable value matches the most rele-

vant label in its subtree. Unfortunately, due to generalization error,

the estimated ẑn values might not exactly match the Zn values. As

a result, the regret accumulates at each tree level whenever a node

with lower zn is maintained in shortlist instead of the highest one.

The regret suffered is at mostmaxn∈S 2|zn − ẑn |, where S is the set

of shortlisted nodes at a tree level. A little more algebra reveals that

this quantity is in fact bounded by (50).

max

n∈S
2|zn − ẑn | ≤

√
1

2

Ex
∑

n:zn−1>0
snDKL(zn | |ẑn) (57)

which is the bound on the regret suffered by exact prediction

algorithm. That is, beam-search can suffer at most the same amount

of regret at each tree level that exact prediction suffers as a whole.

Now since there are logL tree levels, the regret of beam search

algorithm is bounded by

≤ log
2 L

√
W√
Np

√
1 +

√
5 log

(
3L

δ

)
(58)

	Abstract
	1 Introduction
	2 Related Work
	3 Extreme Regression Metrics
	4 XReg: eXtreme Regressor
	4.1 Label Tree Construction
	4.2 A Probabilistic Regression Model
	4.3 Pointwise Inference
	4.4 Labelwise Inference

	5 Experiments
	6 Conclusions
	7 Acknowledgements
	References
	A Theorems and Proofs

